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Global ocean-sea ice model

« ACCESS-OMZ2 (Kiss et al., 2019) 5
« MOMS.1, CICES.1.2 -

 Input: atmospheric reanalysis JRA55-do (Tsujino et al., 2018)

access-hive.org.au
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@ ACCESS-Hive Docs % Q | @ Hive Forum &> ACCESS-NRI [Q Contribute ]

Home Getting Started Models Run a Model Data and Model Evaluation Tutorials Community Resources About

Welcome to ACCESS-Hive Docs!

&
(4
Documentation for ACCESS users: getting set up, running models and model evaluation
New ACCESS user? Need help? Want to collaborate?
Get Started on NCI FAQ / Support Contribute
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Data and Model Community
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Global ocean-sea ice model ‘

« ACCESS-OMZ2 (Kiss et al., 2019)
« MOMS5.1, CICES.1.2
 Input: atmospheric reanalysis JRA55-do (Tsujino et al., 2018)
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@ python” By xarray

COSIMA Cookbook

Welcome to the COSIMA Cookbook!

This repository is a Cookbook of Recipes & = .

We explain: a “recipe” here is an example an analysis of some ocean-sea ice model out-
put or some ocean-related observational datasets. Each “recipe” comes in a self-

contained and well-documented Jupyter notebook. All the recipes combined form a
cookbook | !

Happy cooking! @ € & @

To get started have a look at the tutorials and then browse through the available recipes
to find something the better suits your ‘taste’ (i.e., your needs)!

Contents:

 Tutorials

Recipes

Notebook Guidelines
Contributing to the Cookbook
GitHub Repository
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Recipes
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Global ocean heat content during the spin-up
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Global ocean heat content anomalies, 0-2000 m

—-— Reanalysis product (Chengetal., 2019)

-=-=QObservational product (Levitus etal., 2012)
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Fully-forced simulation: 6.9
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7 Aprll 2022 mens  THECONVERSATION - @

e

- deleted 12 TB of data
- everything from every project

It's such a horrible feeling when you realise what you've done - but
In addition to deleting a control _run during_my Php, | also incorrectly ran an The Southern Ocean
ensemble of runs last year. Luckily ESM1.5 is (relatively) cheap and fast to re-run...
| felt ridiculous and like a modelling imposter who has no idea what they're absorbs more heat than any
slIhTe. | messaged a friend (who's much better at running models than me!) and she other ocean on Earth, and
was like "oh, don't worry, once | did something similar and ran a whole simulation the impacts will be felt

. 1 n | H H i -
with X set as -1 instead of 1- and | felt so much better! Hearing these stories make it for generations
so much more bearable | think!

Published: September 7, 2022 7.18pm AEST

Shutterstock

v Maurice Huguenin, UNSW Sydney, Matthew England, UNSW Sydney,
Ryan Holmes, University of Sydney

w6342 @0 x W in

Great to hear that you have got things going already and that your results are
reproducible. | hope the run completes easily.
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Subsurface warming of the
West Antarctic continental shelf
linked to El NIno events
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Background

* Volume loss from Antarctic ice shelves is
accelerating (Paolo et al. 2015)

 Ice loss influenced by internal climate
variability and anthropogenic forcing
(Holland et al. 2019)

« EI Nifo: Theight but | mass of West Antarctic
iIce shelves (Paolo et al. 2018)
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The questions The method
 How do El Nino & La Nina impact the West +« ACCESS-OM2 (Kiss et al. 2020)
Antarctic shelf circulation? = 1/10° configuration

» JRAS55-do reanalysis (Tsujino et al. 2018)

« What processes are responsible for
warming and cooling on the shelf? 1/10°
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* Repeat-year forcing spin-up
« ENSO anomalies on top
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Forcing for the idealised simulations

Repeat-year forcing [t, X, V]

+

ENSO anomalies (time series [t] x spatial pattern [x,y])
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Forcing for the idealised simulations

N34 index

| —— N34 index
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El Nifio sea level pressure and surface winds La Nifia sea level pressure and surface winds
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El Nino simulation La Nina simulation
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El Nino simulation La Nina simulation
a Heat content anomalies (100 m - shelf bottom) b Heat content anomalies (100 m - shelf bottom)
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Schematic

a

El Nino

b La Nina
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bottom Ekman response

baroclinic adjustment
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1. Drivers and distribution of
global ocean heat uptake

over the last half century
(Huguenin et al. 2022, Nat. Comms.)

2. Subsurface warming of West
Antarctic coastal waters

linked to EIl Nifio events
(Huguenin et al., 2020, J. Clim.)
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A journey through two research projects
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