Drivers and distribution of ocean heat uptake over the last half century

climate extremes

- No control run and abrupt shifts in OMIPstyle spin-up
- How to account for model drift?
- New 2000-year pre-industrial spin-up
- Repeat 1962-71 forcing, but with $0.163^{\circ}C^{*}$ and -7 W m^{-2**} offset *HadCRUT5 (Morice et al. 2021), **IPCC AR5 SPM

Considerably improved ocean heat uptake estimate

- New hindcast captures observed evolution of ocean heat uptake better $_{=}$ than most previous oceansea ice simulations
- **OMIP-2**, when **following** our method, would better capture the observed trend

Maurice F. Huguenin^{1,2,*}, Ryan M. Holmes^{1,3,4} and Matthew H. England^{1,2}

¹Climate Change Research Center and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia ²Australian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, Australia ³School of Mathematics and Statistics, University of New South Wales, Sydney, Australia ⁴School of Geosciences, University of Sydney, Sydney, Australia *E-mail: <u>m.huguenin-virchaux@unsw.edu.au</u>

occurred and where this heat is stored today is limited by sparse observations.

Fig. 2. Recent global ocean heat content anomalies, 0-2000 m.

• Since the 1970s, the ocean absorbed almost all of the excess energy in our climate system. However, our knowledge of where heat uptake has • Here we use the global ocean-sea ice model ACCESS-OM2* forced by the observationally constrained atmospheric fields** *Kiss et al. (2020), **Tsujino et al. (2018)

Fig. 3. Schematic summarising anomalous global ocean heat uptake and transport over the last half century in the hindcast simulations with full, wind- and thermal-only forcing.

- Recent surface wind and thermal property trends can explain 50% of ocean warming signal
- Isolated over the **Southern Ocean**, these trends account for nearly all of the global heat uptake
- Southern Ocean heat uptake facilitated by cool sea surface temperatures & sensible heat fluxes when thermal forcing is held fixed
- fixed and thermal properties evolve over time

ICSHMO 2022, 15-17 February

Increased downward longwave radiation more dominant when winds are