Subsurface warming of West Antarctica during El Niño

Maurice F. Huguenin^{1,2,*}, Ryan M. Holmes^{3,4}, Paul Spence^{5,6} and Matthew H. England²

¹Climate Change Research Centre and ARC Centre of Excellence in Climate Extremes, University of New South Wales, Australia, ²Centre for Marine Science and Innovation and ARC Australian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia, ²Centre for Marine Science and Innovation and ARC Australian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, Sydney, New South Wales, Australia, ³School of Geosciences, University of Sydney, New South Wales, Australia, ⁵Institute for Marine and Antarctic Studies and ARC Australian Centre for Excellence in Antarctic Science, University of Tasmania, Tasmania, Australia, ⁶Australian Antarctic Partnership Program, University of Tasmania, Tasmania, Australia

- Even though West Antarctic shelf temperatures are dominated by decadal-scale climate variability, ENSO also likely **impacts** shelf temperatures and basal melting of the ice shelves
- However, investigating the isolated role of ENSO is tricky because it can be masked by other modes of variability (SAM, zonal wave-3 variations, the IPO, tides, storms, ...)

Isolating the ENSO signal on the West Antarctic shelf

Month

- ACCESS-OM2-01 Kiss et al. (2020)
- 1/10° global ocean-sea ice model with 75 z* levels
- forced by JRA55-do, atmospheric reanalysis Tsujino et al. (2018)
- investigate warming and cooling on the shelf during ENSO

Idealised simulations

climatological repeat-year forcing[x,y,t] + ENSO anomalies

Fig. 1. a, Time series of the Niño 3.4 index (equatorial Pacific sea surface temperature, °C) and West Antarctic sea level pressure (SLP, hPa) anomalies. b, c, Spatial patterns of sea level pressure (hPa) and surface winds (m s⁻¹) during the shaded El Niño (pink) and La Niña (blue) periods in **a**. **d**, **e**, Composite time series associated with ENSO sea surface temperature anomalies based on observed events.

- Take Home
- **<u>El Niño</u>**: weaker Amundsen Sea Low & weaker coastal easterlies \rightarrow reduced poleward Ekman transport of cold surface waters \rightarrow advection of warm Circumpolar Deep Water onto shelf
- La Niña: response inhibited by stronger Amundsen Sea Low & stronger surface easterlies

Fig. 2. *a*, *b*, *Peak event depth-averaged shelf temperature response* **Fig. 3.** *a*, *b*, Time series of mean shelf temperature responses (10^{20} J). (°C). *c-f*, Mean across-shelf temperature responses averaged over the c, d, Poleward Ekman anomalies at the 1000 m isobath location (Sv). regions outlined in **a**, **b** (°C). Black lines are climatological isopycnals. e, f, Main West Antarctic subsurface heat budget terms (10¹⁹ J).