The CO₂ System in Seawater

General Introduction:

 $pH = -log([H^+]) \rightarrow pH = 8.1 \triangleq [H^+] = 10^{-8.1} \ \mu mol \ kg^{-1} \ or \ mmol \ m^{-3}, \ pK_1 = -log(K_1) \rightarrow pK_1 = 5.88 \triangleq K_1 = 10^{-5.88} \ holdsymbol{metric}$

Unknowns:

 $CO_{2(gas)}$, $H_2CO_3^*$, HCO_3^- , CO_3^{2-} , H^+ , OH^- , $B(OH)_4^-$, H_3BO_3 , DIC, Alk

Reactions:		Equilibrium constants [careful: varying units]:
$\mathrm{CO}_{2(\mathrm{gas})} + \mathrm{H}_2\mathrm{O} \stackrel{\mathrm{K}_0}{\leftrightarrow} \mathrm{H}_2\mathrm{CO}_3^* \left(\mathrm{i.e.CO}_{2(\mathrm{aq})} + \mathrm{H}_2\mathrm{CO}_3\right)$	(1)	$K_{0} = \frac{[H_{2}CO_{3}^{*}]}{pCO_{2}} $ (6)
$H_2CO_3^* \stackrel{K_1}{\leftrightarrow} H^+ + HCO_3^-$	(2)	$K_{1} = \frac{[H^{+}][HCO_{3}^{-}]}{[H^{-}CO^{*}]} $ (7)
$HCO_3^- \stackrel{K_2}{\leftrightarrow} H^+ + CO_3^{2-}$	(3)	$[H_2CO_3]$ $[H^+][CO_2^2^-]$
$H_2O \stackrel{K_w}{\leftrightarrow} H^+ + OH^-$	(4)	$K_2 = \frac{[H - H] [H - C] [H - C]]}{[H - C] [H - C]]} $ (8)
Kp		$K_w = [H^+][OH^-]$ (9)
$H_3BO_3 + H_2O \leftrightarrow H^+ + B(OH)_4^-$	(5)	$_{V} = [H^{+}][B(OH)_{4}^{-}]$ (10)
		$K_{\rm B} = \frac{1}{[{\rm H}_3 {\rm BO}_3]} \tag{10}$
Concentration definitions $[\mu mol kg^{-1} \text{ or } mmol m^{-3}]$:		Approximations:
Concentration definitions [μ mol kg ⁻¹ or mmol m ⁻³]: DIC = [H ₂ CO ₃ [*]] + [HCO ₃ ⁻] + [CO ₃ ²⁻]	(11)	Approximations: DIC \approx [HCO ₃ ⁻] + [CO ₃ ²⁻]
Concentration definitions $[\mu mol kg^{-1} \text{ or } mmol m^{-3}]$: DIC = $[H_2CO_3^*] + [HCO_3^-] + [CO_3^{2-}]$ 0.5% 88.65% 10.9% Allow $[HCO_3^-] + [O(2^{-1}) + [O(2^{-1}$	(11)	Approximations: $DIC \approx [HCO_3^-] + [CO_3^{2-}]$
Concentration definitions [μ mol kg ⁻¹ or mmol m ⁻³]: DIC = [H ₂ CO ₃ [*]] + [HCO ₃ ⁻] + [CO ₃ ²⁻] 0.5% 88.65% 10.9% Alk = [HCO ₃ ⁻] + 2[CO ₃ ²⁻] + [OH ⁻] - [H ⁺] + [B(OH) ₄ ⁻] 76.8% 18.8% 0.2% 4.2%	(11) (12)	Approximations: $DIC \approx [HCO_3^-] + [CO_3^{2-}]$ $Alk \approx Carb - Alk = [HCO_3^-] + 2[CO_3^{2-}]$
Concentration definitions $[\mu mol kg^{-1} \text{ or } mmol m^{-3}]$: DIC = $[H_2CO_3^*] + [HCO_3^-] + [CO_3^{2-}]$ 0.5% 88.65% 10.9% Alk = $[HCO_3^-] + 2[CO_3^{2-}] + [OH^-] - [H^+] + [B(OH)_4^-]$ 76.8% 18.8% 0.2% 4.2% TB = $[B(OH)_4^-] + [H_3BO_3^-] = c \cdot S **$	(11) (12) (13)	Approximations: $DIC \approx [HCO_3^-] + [CO_3^{2-}]$ $Alk \approx Carb - Alk = [HCO_3^-] + 2[CO_3^{2-}]$ $K_2 (2 \cdot DIC - Alk)^2$
Concentration definitions [μ mol kg ⁻¹ or mmol m ⁻³]: DIC = [H ₂ CO ₃ [*]] + [HCO ₃ ⁻] + [CO ₃ ²⁻] 0.5% 88.65% 10.9% Alk = [HCO ₃ ⁻] + 2[CO ₃ ²⁻] + [OH ⁻] - [H ⁺] + [B(OH) ₄ ⁻] 76.8% 18.8% 0.2% 4.2% TB = [B(OH) ₄ ⁻] + [H ₃ BO ₃] = c · S **	(11)(12)(13)	Approximations: DIC \approx [HCO ₃ ⁻] + [CO ₃ ²⁻] Alk \approx Carb - Alk = [HCO ₃ ⁻] + 2[CO ₃ ²⁻] pCO ₂ $\approx \frac{K_2}{K_0 \cdot K_1} \frac{(2 \cdot DIC - Alk)^2}{Alk - DIC}$
Concentration definitions [µmol kg ⁻¹ or mmol m ⁻³]: DIC = $[H_2CO_3^*] + [HCO_3^-] + [CO_3^{2^-}]$ 0.5% 88.65% 10.9% Alk = $[HCO_3^-] + 2[CO_3^{2^-}] + [OH^-] - [H^+] + [B(OH)_4^-]$ 76.8% 18.8% 0.2% 4.2% TB = $[B(OH)_4^-] + [H_3BO_3] = c \cdot S **$ ** total boron concentration \propto Salinity	(11) (12) (13)	Approximations: $DIC \approx [HCO_3^-] + [CO_3^{2-}]$ $Alk \approx Carb - Alk = [HCO_3^-] + 2[CO_3^{2-}]$ $pCO_2 \approx \frac{K_2}{K_0 \cdot K_1} \frac{(2 \cdot DIC - Alk)^2}{Alk - DIC}$
Concentration definitions [µmol kg ⁻¹ or mmol m ⁻³]: DIC = [H ₂ CO ₃ [*]] + [HCO ₃ ⁻] + [CO ₃ ²⁻] 0.5% 88.65% 10.9% Alk = [HCO ₃ ⁻] + 2[CO ₃ ²⁻] + [OH ⁻] - [H ⁺] + [B(OH) ₄ ⁻] 76.8% 18.8% 0.2% 4.2% TB = [B(OH) ₄ ⁻] + [H ₃ BO ₃] = c · S ** ** total boron concentration \propto Salinity combine (10) & (13) to [B(OH) ₄ ⁻] = TB · $\left(\frac{[H+]}{H} + 1\right)^{-1}$	(11) (12) (13)	Approximations: DIC \approx [HCO ₃ ⁻] + [CO ₃ ²⁻] Alk \approx Carb - Alk = [HCO ₃ ⁻] + 2[CO ₃ ²⁻] pCO ₂ $\approx \frac{K_2}{K_0 \cdot K_1} \frac{(2 \cdot DIC - Alk)^2}{Alk - DIC}$ [HCO ₃ ⁻] $\approx 2 \cdot DIC - Alk$
Concentration definitions [µmol kg ⁻¹ or mmol m ⁻³]: DIC = [H ₂ CO ₃ [*]] + [HCO ₃ ⁻] + [CO ₃ ²⁻] 0.5% 88.65% 10.9% Alk = [HCO ₃ ⁻] + 2[CO ₃ ²⁻] + [OH ⁻] - [H ⁺] + [B(OH) ₄ ⁻] 76.8% 18.8% 0.2% 4.2% TB = [B(OH) ₄ ⁻] + [H ₃ BO ₃] = c · S ** ** total boron concentration \propto Salinity combine (10) & (13) to [B(OH) ₄ ⁻] = TB · $\left(\frac{[H+]}{K_B} + 1\right)^{-1}$	(11) (12) (13)	Approximations: $DIC \approx [HCO_3^-] + [CO_3^{2-}]$ $Alk \approx Carb - Alk = [HCO_3^-] + 2[CO_3^{2-}]$ $pCO_2 \approx \frac{K_2}{K_0 \cdot K_1} \frac{(2 \cdot DIC - Alk)^2}{Alk - DIC}$ $[HCO_3^-] \approx 2 \cdot DIC - Alk$ $[CO_3^{2-}] \approx Alk - DIC$

Solution:

In models of the ocean carbon cycle, two cases are most commonly encountered: (a) specifying DIC and Alk and calculating pCO_2 ; (b) specifying pCO_2 and Alk and computing DIC.

(a) DIC and Alk

The goal is to rewrite the equation for Alk (12) in terms of the known parameters DIC and TB, and then solve the resulting equation for unknown $[H^+]$. As a first step, we use (7), (8), and the DIC definition (11) to write expressions for $[HCO_3^-]$ and $[CO_3^{2-}]$ that contain only $[H^+]$ as an unknown. In the case of $[HCO_3^-]$, this is done as follows. Solve (7) for $[H_2CO_3^*]$ and insert into the DIC definition. Similarly, solve (8) for $[CO_3^{2-}]$ and insert into the DIC definition. This gives

$$DIC = \frac{[H^+][HCO_3^-]}{K_1} + [HCO_3^-] + \frac{K_2[HCO_3^-]}{[H^+]}$$
(14)
Next, we use (8), solve it for [HCO_3^-], and insert it into (14). This gives a second equation for DIC:

$$DIC = \frac{[H^+]^2[CO_3^{2-}]}{K_1 K_2} + \frac{[H^+][CO_3^{2-}]}{K_2} + [CO_3^{2-}]$$
(15)

Solving (14) for $[HCO_3^-]$ and (15) for $[CO_3^{2-}]$, respectively, and inserting the results into (12) eliminates $[CO_3^{2-}]$ and $[HCO_3^-]$ from this latter equation. The concentrations of $[OH^-]$ and $[B(OH)_4^-]$ are similarly eliminated using (9), (10), and (13). This results in our final equation, which is fourth order in the unknown $[H^+]$. This equation can then be solved for $[H^+]$ using an iterative approach. Once $[H^+]$ has been calculated, pCO₂ can be calculated from

$$pCO_{2} = \frac{DIC}{K_{0}} \frac{[H^{+}]^{2}}{[H^{+}]^{2} + K_{1}[H^{+}] + K_{1}K_{2}} \leftrightarrow \frac{DIC}{K_{0}} \left(1 + \frac{[H^{+}]}{K_{1}} + \frac{[H^{+}]^{2}}{K_{1}K_{2}}\right)$$
(16)
where this equation has been derived by solving (6) for pCO₂ and then using (7) (9) and (11) to eliminate the

where this equation has been derived by solving (6) for pCO₂, and then using (7), (8), and (11) to eliminate the unknowns $[H_2CO_3^*]$, $[HCO_3^-]$ and $[CO_3^{2-}]$. See also (17) – (19) below.

(b) Alk and pCO₂: Rewrite the equations for the three carbon species, i.e. (6), (7), and (8), in terms of [H⁺] and pCO₂, thus $[H_2CO_3^*] = K_0pCO_2$ (17) $[HCO_3^-] = \frac{K_0K_1pCO_2}{[H^+]}$ (18) $[CO_3^{2^-}] = \frac{K_0K_1K_2pCO_2}{[H^{+1}]^2}$ (19)

 $[H^+]^2$ Substitute these terms into the equations for Alk (12) and also recast the other species, i.e., $[OH^-]$ and $[B(OH)_4^-]$, in terms of $[H^+]$ and total concentration. The resulting equation can again be solved using an iterative approach. Once $[H^+]$ is found, DIC is calculated using (11) and (17) – (19).

Simple answer to what controls surface pCO ₂						
nCO =	$[H_2CO_3^*]$	K ₂	$[HCO_{3}^{-}]^{2}$	~ K ₂	$(2 \cdot \text{DIC} - \text{Alk})^2$	
pc0 ₂ –	K ₀	$K_0 \cdot K_1$	$[CO_3^{2-}]$	$\sim \overline{\mathrm{K}_{0}\cdot\mathrm{K}_{1}}$	Alk – DIC	

→ $pCO_2 = pCO_2$ (physical & biological processes) i) $K_2/(K_0 \cdot K_1)$ controlled by T & S ii) DIC controlled by air-sea gas exchange & bio iii) Alk only controlled by ocean biology

Summary of th	e most important pCO ₂ sensitivities in	n seawater		
Parameter	Definition	Mean Global	Mean High Latitudes	Mean Low Latitudes
Temperature	$\gamma_{\rm T} = \frac{1}{\rm pCO_2} \frac{\partial \rm pCO_2}{\partial \rm T}$	0.0423°C ⁻¹	0.0423°C ⁻¹	0.0423°C ⁻¹
Salinity	$\gamma_{\rm S} = \frac{\rm S}{\rm pCO_2} \frac{\partial \rm pCO_2}{\partial \rm S}$	1	1	1
DIC	$\gamma_{\text{DIC}} = \frac{\text{DIC}}{\text{pCO}_2} \frac{\partial \text{pCO}_2}{\partial \text{DIC}} = \frac{\partial \ln \text{pCO}_2}{\partial \ln \text{DIC}} *$	10	13.3	9.5
Alk	$\gamma_{Alk} = \frac{Alk}{pCO_2} \frac{\partial pCO_2}{\partial Alk} = \frac{\partial \ln pCO_2}{\partial \ln Alk}$	-9.4	-12.6	-8.9
Freshwater	$\gamma_{\text{freshwater}} = \frac{S}{pCO_2} \frac{\partial pCO_2}{\partial S}$ $= \gamma_S + \gamma_{\text{DIC}} + \gamma_{\text{Alk}}$	1.6	1.7	1.6

* γ_{DIC} (Revelle factor) $\propto [\text{CO}_3^{2-}]^{-1} \propto \partial [\text{H}_2\text{CO}_3^*]/\partial \text{DIC}$ \rightarrow measure of resistance to atmospheric CO₂ being absorbed by the surface ocean layers

Take-Home Messages & Glacial-Interglacial Synthesis

Limitations to marine productivity: bottom up (a) & top of (a) temperature conditions (a) light conditions (a) availability of macronutrients (N, P, Si) (a) availability of micronutrients (in part. Fe) (b) zooplankton grazing	 lown (b) Limitations to terrestrial productivity: temperature conditions light conditions (most imp. at high lat.) water availability availability of nutrients (esp. N) CO₂ concentration
 Estimating the land sink: bottom up (a) & top down (b) (a) forest inventories: Φ estimate from measurements (a) CO₂ flux co-variance: FLUXNET very sparse in tropic. (b) atm. CO₂ inversions: i.e. Mauna Loa sfc-atm. net C flu remote sensing: measure leaf area index, convenient modelling 	 Mechanisms for land sink: CO₂ fertilization: potentially large sink, esp. NH N fertilization: ↑N^{ant.} = stimulates add. growth Past land-use change: fast CO₂ uptake at regrowth Climate change: ↑sink due to warming in high lat. & strong negative response in low lat. (drying)
$\begin{array}{l} \label{eq:constraint} \hline Ocean \ carbon \ cycle \ feedbacks: \\ \bullet \ ocean \ surface \ warming \ feedback \ + \\ \downarrow \ solubility \ \rightarrow \downarrow \ CO_2 \ up take \\ \bullet \ ocean \ biogeochemical-loop \ (circulation) \ feedback \ - \\ \uparrow \ stratification \ limits \ upward \ DIC \ \& \ nutrients \ \rightarrow \downarrow \ CO_{2, \ out} \\ \bullet \ ocean \ biogeochemical-loop \ (biota) \ feedback \ - \ / \ + \\ \uparrow \ stratification \ \rightarrow \uparrow \ / \ limit \ corg \ downward \\ \bullet \ \ carbonate \ chemistry \ chemical \ feedback \ + \\ uptake \ CO_2 \ \rightarrow \downarrow \ CO_3^2 \ \ \ \uparrow \ \gamma_{DIC} \ \rightarrow \ limit \ capacity \ CO_2 \ uptake \\ \bullet \ \ circulation \ feedback \ + \\ \downarrow \ AMOC \ \rightarrow \ less \ transport \ of \ CO_2 \ into \ ocean \ interior \\ + \ \ \ positive \ \& \ - \ \ \ negative \ feedback \end{aligned}$	Land carbon cycle feedbacks: • CO_2 fertilization feedback – $\uparrow CO_2 \rightarrow \uparrow plant H_2O$ -use efficiency $\rightarrow \uparrow CO_2$ uptake • climate feedback for land vegetation $-/+$ $\uparrow CO_2 may \rightarrow \uparrow T \& R$ perturbations $\rightarrow \uparrow /\downarrow growth$ of land vegetation $\triangleq \uparrow /\downarrow land CO_2$ uptake & ultimately f _{air} • climate feedback for soil carbon + $\uparrow SH$ flux into soil may $\rightarrow \uparrow decomposition$ (higher resp.) $\rightarrow \uparrow soil carbon being lost to atm. \triangleq \uparrow CO_2^{atm.}• other potential feedbacks include -/+land cover/vegetation, CH_2/N_2O/CO_2 feedbacks, etc.$
 Upwelling on-/ offshore profile of CO₂ determined by: 1. circulation (upwelling) 2. solubility (temperature) 3. biology (photosynthesis & export) 4. gas exchange (δpCO₂) 	 Biological soft-tissue pump: efficiency
Explaining the 100ppm CO2 difference during G–IG: ***loss of C from bio (~500 PgC)+15 μ atmcolder SST (~ - 4°C)-32 μ atmlower sea-level (\uparrow S \triangleq \uparrow pCO2)+12 μ atmsum~ 0 μ atmtarget-80 to - 100 μ atm	Physical & biological mechanisms to close the Southern Ocean window & reduce outgassing of CO ₂ : 1. by adding a physical barrier, i.e. sea-ice 2. by stratifying the SO or by reducing upwelling 3. by increasing export of organic matter *** $CO_{2,foss.}[Pg C] = \frac{\text{mixing ratio [ppm]} \cdot 10^{-6} \cdot \text{N}_{atm.} \cdot \text{M}_{C}}{10^{15}}$ $\rightarrow 2.14 \text{ Pg C} \cong 2.14 \cdot 10^{15} \text{ g C} \approx 1 \text{ ppm} \approx 1 \text{ µatm}$
Deglaciation sequenceAntarctica: \downarrow atm. $\Delta^{14}C \triangleq \uparrow DotBipolar see-saw\downarrow \delta^{18}O (Greenland) \triangleq \uparrow \delta^{18}O (AntLGM to Holocene\uparrow CO_2^{atm.} at 18 ka \triangleq \downarrowFe-flux (at ODP)$	$me C CO_{2} \triangleq \uparrow F(SIO_{2} \cdot nH_{2}O) \triangleq \uparrow Feb. SST \triangleq \uparrow Dome C \delta D$ $rarctica = Ant.) \triangleq \uparrow CO_{2}^{atm.} (Ant.) \triangleq \uparrow Opal Flux (Ant.)$ $1090) \triangleq \downarrow \delta^{15}N \triangleq \downarrow \Phi Alkenones \triangleq \downarrow Fe-flux (at EDC, Ant.)$

• $CO_2^{\text{atm.}}$ input of 500 Pg C \rightarrow acidifies ocean, $\downarrow [CO_3^{2^-}] \rightarrow$ shoaling of saturation horizon & dissolution of CaCO₃ supplies CO₃^{2^-} again to balance Alk out

• with lysocline shoaled, positive imbalance exists between riverine input of Alk & net removal of Alk by CaCO₃ burial $\rightarrow \uparrow [CO_3^{2-}]$ decreases the oceanic buffer factor (γ_{DIC}) which permits the ocean to absorb add. CO₂ from the atm. $\rightarrow \downarrow$ saturation horizon as Alk is removed by CaCO₃ burial

Carb. comp.

Southern Ocean Synthesis Framework

- cooler conditions during LGM \rightarrow northward **shift of westerlies** & \downarrow upwelling of deep water in the Antarctic
- cold but fresh stable surface layer with frequent **substantial ice coverage** further *LCDW* ventilation
- response: **decreased bioproductivity** and **enhanced stratification** in **Antarctic** but utilization of NO₃⁻ goes up indicating drop in upward supply larger than ↓biological export
- higher dust input from the atm. is not large enough to overcome the physically-induced reduction in phytoplankton production in the Antarctic
- however, dust is large enough to alleviate diatoms from Fe stress \rightarrow lower SI utilization in this region
- glacial **sub-Antarctic** is **more productive**, perhaps due to shifted westerlies & increased supply of iron
- sub-Antarctic utilization of nitrate & phosphate does not change much → why: increased nutrient supply from the thermocline offsets effect of observed ↑productivity
- changes suggest a combined **physically** & **biologically induced** closure of the SO window reducing atm. CO₂
- changes in the SO linked with changes throughout the rest of the ocean
- possibly due to dust, degree of NO_3^- utilization higher in both regions $\rightarrow \downarrow$ surface nitrate & less nutrient transport to lower latitudes and which causes the O_2 minimum zone to migrate into the abyssal ocean & reduced release of CO_2 from the SO
- higher dust flux to glacial SO also lowers Si-to-NO₃⁻ uptake ratio of diatoms there, leading to lower Si(OH)₄ utilization (leaking the Southern Ocean Si trap) by providing Si to the low latitudes
- this causes a phytoplankton community shift from coccolithophorids to diatoms
- the resulting lowered export of CaCO₃ relative to C_{org} then reduces atm. CO₂ through CaCO₃ compensation
 a TODAY

