Cloud Dynamics - Hurricanes

Take Home Messages					
Chapter					
1	 Overview and Introduction naming conventions for TCs depend on the region: Hurricane in North Atlantic and Northeast Pacific, Typhoon in Northwest Pacific, Severe Tropical Cyclone in Southwest Pacific and near Indonesia, Tropical Cyclone in the southern Indian and Severe Cyclonic Storm in northern Indian Ocean 				
	Prerequisites	for TC formation			
	THERMODYNAMIC 1. SST > 26.5 °C to at least 50 m depth \rightarrow fuel for TC 2. sufficient moist mid-troposphere 3. conditionally unstable atmosphere $\Gamma_s < \gamma < \Gamma_d$	 DYNAMIC at least 5° from the equator → Coriolis effect induces rotation pre-existing weather disturbance with sufficient vorticity and convergence, e.g. a tropical easterly wave low vertical wind shear between surface and upper troposphere 			
	 Hurricane hazards include storm surges (most de the NE-quadrant), heavy rain (including Predecess moisture that is transported poleward directly in fro and they are usually weaker than their non-tropical 	evastating hazard), high winds (esp. in the eyewall and sor <u>R</u> ain <u>E</u> vents which are sustained by deep tropical ont of the TC) and tornado activity (NE-quadrant favored I counterparts)			
4	Thunderstorms I				
	 horizontal vorticity (η and ξ) is generated by the conversion of η and ξ in the presence of buoya 	The shear of the horizontal wind and vertical vorticity ζ by ncy source			
	 vertical vorticity is produced by tilting of horizontal 	vorticity $\rightarrow \frac{\partial g}{\partial t} \approx \frac{\partial g}{\partial z} \frac{\partial w}{\partial y}$			
	 the dynamic pressure minima associated with 	the vortices are both negative : $p_{D_z}^* \sim -\Delta p_{D_z}^* \sim -\zeta^2$ where			
	the strong mid-level rotation acts to lower pressure updrafts	$e \rightarrow$ inducing updraft growth on each flank thus maintaining			
	 as the splitting progresses and the two updra precipitation development) tilts the vortex lines dow clockwise directional shear produces pressure descent on the northern flank → enhancing the 	ft centers move apart, the downdraft (and associated wnward and a two-vortex pair develops gradients that favour ascent on the southern flank and development of the storm moving south and suppressing			
	the development of the storm moving north, thus p	promoting right-turning supercells			
5	Thunderstorms II				
	 tilting of horizontal vorticity creates vertical vorticity: ∂ζ/∂t ≈ ∂U/∂z ∂w/∂y → vorticity couplets are 90° to shear vectors fluid shear terms create horizontal pressure perturbations p[*]_{Dxy} = 2ρ₀S∇_hw = 2ρ₀ (∂U/∂z ∂w/∂z + ∂V/∂z ∂w/∂y) supercell prerequisites include ample low-level moisture, sufficient CAPE (instability) and clockwise turning shear of < 20 ms⁻¹ within a deep layer (0-6 km) gust fronts as the leading edge of a mesoscale pressure dome separating the outflow air in a convective storm from the environmental air can help generate new TS cells and cut off buoyant air supply for old are leaded. 				
	• downbursts due to negative buoyancy driven by θ_e (strength can be explained by DCAPE) • $q_{g}[g kg^{1}]$				
	Prerequisites for Tornadogenesis				
	 mesocyclone (i.e. a deep cyclonic updraft that is persistently rotating around a vertical axis) 	 cool downdraft and warm updraft air become intertwined and create a rotating wall cloud 			
	• rapid increase in low-level rotation inducing low p	RFD focuses mesocyclone's base sucking air from an			
	(remember: $p_b^* \propto -\zeta^2$) • formation of rear-flank downdraft (RED) due to	Increasingly smaller area on the ground \rightarrow intensification of updraft \rightarrow low pressure at ground			
	precipitation formation				
	acceleration of RFD as it approaches the ground and dragging of the mesocyclone with it	→ mesocyclone is pulled down and a visible condensation funnel appears			
	Ingredients fo	r Tornadogenesis			
	 shear of > 10 ms⁻¹ between surface and 1 km needs large storm-relative belieity (SPH: velocity times) 	 SRH in low levels (0 – 1 km) of 100 to > 200 m²s⁻² caused by tilting of horizontal verticity is peeded to 			
	vorticity):	create vertical vorticity (ζ) here			
	$SRH = \int_{-\infty}^{d} (v-c) * w_{\rm b} dz$	 CAPE at low levels (0 – 3 km) is important to determine updraft strength 			
	J_0 where (<u>v</u> - <u>c</u>) = storm-relative wind	 height of LCL: best < 1000 m 			

height of LCL: best < 1000 m
 Maurice Huguenin-Virchaux, 21. 2. 18

	w _h = horizontal vorticity		 CIN: best < prevent that 	: 100 Jkg ⁻¹ \rightarrow however CIN is good to at instability is removed earlier in the day		
	 large-scale flow determines the frequency of tornadoes in the US with moisture supply from the Gulf of 			moisture supply from the Gulf of		
	Mexico, the Rocky Mountains providing deep dry adiabatic mixed layer which makes the loaded gun and the					
6a	Atmospheric Dynamics Needed for	TC Formation				
ou	 TCs consist of a superposition of 	of the primary azimu	thal (i.e. axisymr	metric circulation around the TC center.		
	reversing with height from cyclo	nic to anticyclonic) a	nd secondary "ii	n-up-and-out" circulation		
	Summary of TC circulation: frict	ctionally induced infl	ow inside the BL	\rightarrow outflow induced by supergradient		
	wind above the BL near the I	RMW $\left(-\frac{1}{2}\frac{\partial p}{\partial r} < \frac{v^2}{r} + \right)$	$fv) \rightarrow$ weaker, v	rertically extended diabatically-induced		
	inflow above the BL \rightarrow strong o	utflow above $z = 10 \text{ k}$	m in region of we	ak inertial stability \rightarrow maximum winds		
	located inside the BL due to the	e effect of frictional c	onvergence that	is able to overtake frictional dissipation		
	\rightarrow winds get weaker and weak	er with height \rightarrow as	cent along the ey	rewall, with secondary maximum above		
	the BL at the RIVIV (frictionally	the BL at the RMW (frictionally induced convergence)				
	 the boundary layer spin-up provide spin-up provid	nce towards the storn	n center			
	 reduction in <i>r</i> increases th 	e velocity, which in tu	urn increases frict	tion		
	 this leads to further conversion 	ergence and v increas	ses, and so on			
	 the Saywer-Eliassen equation 	n describes the shap	e of the second	ary circulation that is generated as a		
	result of some forcing:	posting				
	2. vertical variation of circulatio	on and diabatic heat	ina			
	3. vertical variation of momen	tum sources (friction	n, etc.)			
		Storm Type (omparison			
	Thunderstorm	Supercell	Jompanson	Tropical Cyclone		
	large CAPE	large CAPE		no CAPE		
	 CIN as a barrier over land 	 CIN as a barrier over land 		 no CIN over ocean → dissipates over land 		
		e ovor land		due to missing energy source		
	$\frac{1}{\rho}\frac{\partial p}{\partial r} = fv + \frac{v^2}{r} \& \frac{1}{\rho}\frac{\partial p}{\partial r} = fv$	 strong wind shear 	(preferentially			
	<i>p</i> 0 <i>p</i> 0.	clockwise turning)	(preferentially			
	• gradient & cyclostrophic balance	 gradient & cyclostr 	rophic balance	geostrophic & gradient wind balance		
	 energy source: CAPE due to baroclinicity 	 energy source: stre horizontal vorticity 	etching/tilting of	 energy source, latent near release by evaporation of water 		
	baroonnony	non-symmetric: se	paration between	• symmetric		
	 lifetime: ~1 hour since downdraft or 	 up- & downdraft re lifetime: several ho 	egions ours	 lifetime: ~10 days 		
	gust front undercuts the updraft and					
	leads to storm dissipation	 size: ~50 km 		• size: ~10 ³ km		
	• SIZE. ~LEHS OF KIT	• 0120. 00 km				
	well-mixed surface layer warm, moist low level inflow from South					
		 cold, dry mid-tropo 	sphere flow from	requires moist mid-troposphere		
		West		• only conditions close to saturated		
				conditions ($RH_w \sim 100$ %, i.e.		
				temperature is following the moist		
				aulabat		
	Differences between Tropical and Extratropical Cyclone					
	 presence of warm core at storm center 	, especially at mid-	presence of cold	d core at the storm center		
	and upper levels		and the state of t	- turn		
	 axial symmetry absence of fronts: no baroclinicity no tilted structure no tilted structure anticyclonic shear with height dimensions: hundreds of km axymmetric structure presence of warm and cold sector, separated by fronts (strong temp. gradient at the surface) vertically tilted structure (westward) cyclonic shear with height dimensions: hundreds of km 		 asymmetric stru presence of war 	m and cold sector, separated by fronts		
			adient at the surface)			
			tructure (westward) vith height			
			usands of km			
	energetically driven by sensible / latent heat fluxes from the energetically driven by baroclinicity (strength of latitudinal the area large float)			ven by baroclinicity (strength of latitudinal		
	 sea thermal gradient) presence of a clearly defined eye, surrounded by conv. 					
6b	Paradigms in TC Science					
	• CISK \rightarrow heat removed from the ocean is the true source of energy of TCs where strong convergence of					
	moist air provides fuel to mair	moist air provides fuel to maintain the convection – drawback since moisture convergence does not imply				
	convection, there is no cond	monal instability in	the tropics, in i	reality the instability is more efficiently		

		released by small TSs than by aggregation into vortex and CISK could be as large over land as over the				
		ocean				
	•	WISHE \rightarrow positive feedback between circulation and heat fluxes, assumes gradient wind balance				
		everywhere and concludes that ↑wind ≙ more evaporation ≙ higher LH release which increases winds				
	•	VHT \rightarrow <u>V</u> ortical <u>H</u> ot <u>I</u> owers as the current theory and focuses on the role of convective clouds in generating				
		vorticity via vortex stretching in deep convective cloud – VHT tend to merge with each other and with MCV				
		to create mesoscale convective systems (MCS) – these MCSs have two inflows which promote convergence				
7	1 1	towards the low pressure system center, causing vorticity anomalies to merge at the center of the storm				
1	Hur	Ticanes I – General Features				
	•	I Us can be described using a Carnot process with neating due to moisture from the BL (WISHE; <u>isothermal</u>				
		<u>expansion</u>), <u>adiabatic expansion</u> as the all fises in the eyewall (\downarrow p, θ_e const.), <u>isothermal compression</u> as the air is being expled (\uparrow p, i.e. (A) and ediphetic compression with polyheat explanate (\uparrow p, i.e. (A) and ediphetic compression with polyheat explanate (\uparrow p, i.e. (A) and ediphetic compression with polyheat explanate (\uparrow p).				
a	Ни	all is being cooled ($ p, 1.e. \downarrow 0_e$) and <u>adiabatic compression</u> with no near exchange ($ p, 1.e. \downarrow 0_e$ const.)				
3	Tiur	ET can occur if TCs move to higher latitudes after an initial transformation stage , where the TC weakens				
		due to increased wind shear the cyclone may re-intensify as an extratronical storm as it recurves				
		ahead of an upper level trough or interacts with the midlatitude haroclinic zone				
	•	Interaction with the mid-latitude flow can occur via the three following ways: large-scale ascent as the TC				
		enters a region of an upper-level trough intensification as it enters a region of enhanced baroclinicity or				
		ascent at the baroclinic zone and heavy precipitation				
	•	re-intensification is generally accompanied by an increase in the size of the storm heavy rain and strong				
		winds				
	•	ET has often an impact downstream: it is linked to reduced forecast skill and may trigger Rossby Wave				
		Trains that propagate downstream \rightarrow This situation, linking together forecast uncertainty and potential for				
		high impact weather, may be risky and challenging to forecast				
	•	African Easterly Waves (AEWs) are mesoscale weather systems responsible for the genesis of the majority				
		of Atlantic and East Pacific hurricanes \rightarrow in Western Pacific we have a similar feature, related to local				
		monsoon systems				
		 disturbance must be isolated by the shear and relatively dry environment in order for convection to 				
		organize \rightarrow this can happen for the AEWs that find themselves in Kelvin's cat eyes associated with the				
		African Easterly Jet (AEJ); a "kangaroo pouch" forms, where the system is kinematically isolated from				
		the environment and where the TC embryo is preserved inside (i.e. the marsupial paradigm)				
	•	many TCs develop from initially cold core systems \rightarrow these systems acquire tropical chacteristics (warm				
		core, symmetry, no fronts, etc) via the tropical transition process				
		 a possible mechanism for trougn-induced development is explained in the case of anticyclonic wave brooking 				
		Dreaking				
		 In this case, a significant upstream water vapor transport by the northward anticyclone is beneficial for the TT process which can be viewelized in a Hort Diagram (i.e. emount of transcillaty / extratranscillaty of 				
		the storm)				
10	Sto	adv State Model				
10	Ole	lines of angular momentum <i>m</i> coincide with A [*] surfaces, i.e. we have symmetric neutrality within the				
		The solution of angular momentum m coincide with θ_e surfaces, i.e. we have symmetric neutrality within the subscreeces $\frac{\partial \theta}{\partial M}$				
		vortex above the boundary layer: $\frac{\partial z}{\partial z} _M = 0 \iff \frac{\partial z}{\partial y} _{\theta}$				
	•	the raduis increases with decreasing pressure on an m-surface and thus explains the wideningof the eye				
		with increasing altitude				
	•	the central equation of Emanuel's steady state model is a relationship for the \rightarrow the geometric area $r_{\sigma^{+}}$ as its moist entropy surplus (In				
		radial extent r_0 of the storm in terms of θ_e , T_B and p: $\theta_e/\theta_{ea} > 0$) \uparrow . as f_{\downarrow} and T_B				
		$r_0^2 = \frac{16c_p T_B}{r_0} \int r_0 n * \ln\left(\frac{\theta_e}{r_0}\right) r dr$				
		$f^2 r_0^2 J_0 + (\theta_{ea})$				
	•	the boundary layer exerts a strong thermodynamic control of the storm above it (WISHE paradigm)				
	•	the tangential velocity v is related to the Carnot efficiency, the temperature at cloud base and the saturated				
		moist entropy: $v = v(\eta, T_B, \ln(\theta_e/\theta_{es}))$				
	•	the RH inside the eye increases inwards at least in the absence of strong subsidence in the eye $ ightarrow$ warm				
	•	the pressure deficit is a function of ΔRH , T _s , T _B and T _{out} (η)				
	•	the larger the evaporation rate, the larger the pressure deficit in the eye π_{CS}				
	٠	the highest tangential winds v occur when T_{out} is high and we have a high SST				
		Limitations of the Steady State Model				
		ASSUMPTIONS VIOLATED				
	•	conservation of energy • at landfall at the latest or by intrusion of dry air anvironmental parameters (PH, T,) do not change				
	•	environmental parameters ($\pi\pi$, r,) to not change • yes, b/c every TC evolves axisymmetry • in the outflow \rightarrow rainbands cloud bands				
	•	hydrostatic balance • in the presence of buoyancy (eyewall)				
	•	gradient wind balance: $\frac{1}{2}\frac{\partial p}{\partial r} = fv + \frac{v^2}{r}$ • ignores friction (subgradient)				
		<i>P</i> ^o <i>i</i> gnores BL-spin-up (supergradient)				

• ignores BL-spin-up (supergradient)

Maurice Huguenin-Virchaux, 21. 2. 18

	• symmetric neutrality: $\frac{\partial \theta}{\partial z} _M = 0 \leftrightarrow \frac{\partial M}{\partial y} _{\theta}$ • ok in the eyewall					
	conservation of angular momentum m unlikely					
11	Tropical Cyclones in the Reinsurance Concept					
	• the 5-box modelling approach involves the following aspects: i) import any portfolio with entities , ii) encode					
	geography and vulnerability, iii) rate assets using a hazard set by simulating events, iv) apply any					
	insurance conditions and v) calculate expected loss, adaptation measures, cost-benefit analysis, etc.					
12	Hurricanes IV – Intensification and Tracks					
	 there are two possibilities for changing TC intensities: external and internal effects 					
	 external intensification via ocean interaction, impact of clouds, little vertical shear 					
	 internal intensification via production of stronger gradients (same as frontogenesis) in the eyewall 					
	 the eyewall propagates towards the center of the TC, thus shrinks in radius, after 1-2 days collapses, 					
	disappears and is replaced by a new one (at r_m ~50-100 km)					
	• vertical wind shear has detrimental effects on a TC: loss of symmetry, reduction in fuel η and					
	reduction in tangential wind speed v					
	ocean interaction involves adding turbulence to the mixed layer (through breaking waves), strong winds					
	inducing ocean mixed layer currents (reduction in SST) as well as Ekman pumping (most pronounced on					
	the northside due to superposition of the TCs circulation and its translational movement					
	• there are additional (non-linear) effects which can also affect the tracks of TCs dramatically					
	 Interaction of the vortex with the ambient flow (steering effect) Coviding effect 					
	\circ effect of non-uniform flow (borizontal wind shear)					
	\circ baroclinic effects (vertical wind shear, diabatic heating, etc.)					
	 vortex assymmetries 					
13	Hurricanes V – TC Forecasts, Projections (and Tornadoes)					
	seasonal TC forecasts are based on					
	 ocean observations of SST (Argo buoys sparse, esp. in 3D ocean) 					
	 state of the NAO (negative = weaker westerlies which do not act as much as a conveyor belt and thus 					
	do not prevent as many landfalls) \rightarrow <u>NAO⁻ = more TCs in US East Coast</u>					
	 state of the ENSO (El Niño = less TCs in the Atlantic and more in the Pacific due to stronger vertical 					
	wind shear, stronger trades and greater atmospheric stability in the Caribbean Sea) \rightarrow <u>neutral ENSO =</u>					
	more ICs in US East Coast					
	• IC forecasts more dimicult than forecasting ETCS since:					
	• pain can change diastically • more lead time for evacuation is needed					
	• TCs have lots of indirect components (SST_AEWs_etc.)					
	 initial conditions less precise (no airplanes in TC. Argo buoy resolution limited) 					
	• ideally vou need an AOGCM with high ocean model resolution and correct Cu parameterization					
	 you need to have polar-orbiting satellites 					
	• IPCC AR5 concludes low confidence in assessment that TC changes occurred since 1950, that humans					
	contributed to changes and it is more likely than not that further increase in intense TC activity until 2100 will					
	happen					
	 on global scale including all basins, it is estimated there will be an overall decrease in all TC 					
	frequencies, an increase in Cat. 4-5 TC frequency and a slight increase in associated precipitation rate					
	Colorado State University - TC Forecast as of 1 June 2017					
	• 2017 = approx. average activity Hurricane-friendly climate conditions during "active" eras: warm phase of AMO					
	ENSO model prediction ensemble equally favour neutral and El					
	• neutral = weaker shear, weaker trades and less atm. stability					
	in the North Atlantic which means average TCs					
	• El Niño = stronger vertical shear, stronger Atlantic trades and					
	increasing likelihood of TCs in the North Pacific (Camardo et					
	al., 2004)					
	AMO in positive phase since 1992, i.e. warmer North Atlantic					
	 NAO in slightly negative phase which means weaker westerlies → weak westerlies = winds do not hinder TCs from landfall at 					
	the US East Coast as much, resulting in more TCs hitting the coast					